首页> 外文OA文献 >Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method
【2h】

Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method

机译:使用全球定位系统(GPS)和温度数据生成时间活动分类,以估计空气监测研究中的个人暴露:一种自动方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Personal exposure studies of air pollution generally use self-reported diaries to capture individuals’ time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants’ locations. Improved time activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Methods: Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant’s position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary based methods. Results: There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest ‘good’ agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time “Indoors Other” using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time “In Transit” was relatively consistent between the methods, the mean daily exposure to PM2.5 while “In Transit” was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Conclusions: Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution.
机译:背景:关于空气污染的个人暴露研究通常使用自我报告的日记来捕获个人的时间活动数据。个人全球定位系统(GPS)单元的准确性,尺寸,内存和电池寿命的提高,使得可以对研究参与者的位置进行更高分辨率的跟踪。改进的时间活动分类与个人连续性空气污染采样相结合,可以改善对与位置相关的空气污染暴露的评估,以进行健康研究。方法:使用GPS和个人温度收集的数据来自54名居住在加拿大蒙特利尔的哮喘儿童,他们参加了为期10天的个人空气污染暴露研究。开发了一种方法,该方法合并了个人温度数据,然后将参与者的位置与可用空间数据(即道路网络)进行匹配,以生成时间活动类别。比较了基于日记和GPS生成的时间活动类别,并将其与连续的个人PM2.5数据相结合,以评估使用基于日记的方法时暴露分类错误的影响。结果:自动化方法与日记方法之间有很好的一致性;但是,与日记方法(室外= 6.7%,其他室内= 14.4%)相比,自动方法(室外:5.1%,其他在室内= 9.8%)估计在某些位置花费的时间更少。协议统计数据(AC1 = 0.778)建议在所有位置类别的方法之间达成“良好”协议。但是,花费较少时间的地理位置类别(室外和公交)则显示出较大的分歧:例如,使用时间活动日志的“其他室内”平均时间为14.4%,而使用自动方法的平均时间为9.8%。虽然这两种方法之间的“运输中”平均每日时间相对一致,但使用自动方法时“运输中”的PM2.5的平均每日暴露量为15.9μg/ m3,而使用每日日记则为6.8μg/ m3。结论:通过基于GPS的方法分类的平均时间与在时间活动日志中的时间可比,但是两种方法对PM2.5的暴露估算存在差异。一种基于GPS的自动时间活动方法将减轻参与者的负担,从而可能提供更准确,更公正的位置评估。结合连续的空气测量,更高分辨率的GPS数据可以呈现出个人暴露于空气污染的不同且更准确的图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号